Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 7(18): 7334-7346, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28944020

RESUMO

Breeding dispersal is a key process of population structure and dynamics and is often triggered by an individual's breeding failure. In both colonial and territorial birds, reproductive success of conspecifics (RSc) can also lead individuals to change breeding sites after a failure on a site. Yet, few studies have simultaneously investigated the independent contribution of individual reproductive success (RSi) and of RSc on dispersal decision. Here, we develop a modeling framework to disentangle the effects of RSi and RSc on demographic parameters, while accounting for imperfect individual detection and other confounding factors such as age or dispersal behavior in the previous year. Using a 10-year capture-recapture dataset composed of 1,595 banded tree swallows, we assessed the effects of nonmanipulated RSi and RSc on female breeding dispersal in this semicolonial passerine. Dispersal was strongly driven by RSi, but not by RSc. Unsuccessful females were 9.5-2.5 times more likely to disperse than successful ones, depending if they had dispersed or not in the previous year, respectively. Unsuccessful females were also three times less likely to be detected than successful ones. Contrary to theoretical and empirical studies, RSc did not drive the decision to disperse but influenced the selection of the following breeding site once dispersal had been initiated. Because detection of individuals was driven by RSi, which was positively correlated to RSc, assuming a perfect detection as in previous studies may have lead us to conclude that RSc affected dispersal patterns, yet our approach corrected for this bias. Overall, our results suggest that the value and use of RSc as public information to guide dispersal decisions are likely dictated by multiple ecological determinants, such as landscape structure and extent, if this cue is indeed used.

2.
Ecology ; 95(8): 2316-23, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25230481

RESUMO

Dispersal affects processes as diverse as habitat selection, population growth, and gene flow. Inference about dispersal and its variation is thus crucial for assessing population and evolutionary dynamics. Two approaches are generally used to estimate dispersal in free-ranging animals. First, multisite capture-recapture models estimate movement rates among sites while accounting for survival and detection probabilities. This approach, however, is limited in the number of sites that can be considered. Second, diffusion models estimate movements within discrete habitat using a diffusion coefficient, resulting in a continuous processing of space. However, this approach has been rarely used because of its mathematical and implementation complexity. Here, we develop a multi-event capture-recapture approach that circumvents the issue of too many sites while being relatively simple to be implemented in existing software. Moreover, this new approach allows the quantifying of memory effects, whereby the decision of dispersing or not on a given year impacts the survival or dispersal likelihood of the following year. We illustrate our approach using a long-term data set on the breeding ecology of a declining passerine in southern Quebec, Canada, the Tree Swallow (Tachycineta bicolor).


Assuntos
Modelos Biológicos , Andorinhas/fisiologia , Migração Animal/fisiologia , Animais , Demografia , Dinâmica Populacional , Quebeque
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...